2018年5月2日水曜日

Variational Auto Encoder 〜その3〜

はじめに


 先のページで、Variational Auto Encoder(VAE)を実装したChainerのサンプルコードをそのまま動かし、生成される画像を見た。符号化・復号化して得られる画像は、入力画像をそれなりに再現していたが、乱数から生成される画像は精度が良くないことを示した。今回は、サンプルコードに手を加えて実験を行う。

ソースコードの場所


 今回のソースコードはここにある。

評価基準


 このページで示したように、勾配降下法で最適化すべき式は次式である。 \begin{equation} \min_{\phi} D_{KL} \left[ q_{\phi}(\vec{z}|X)||p(\vec{z}|X) \right] = \min_{\phi} {\left[ D_{KL} \left[ q_{\phi}(\vec{z}|X)||p(\vec{z}) \right]-E_{q_{\phi}(\vec{z}|X)}\left[\ln{p(X|\vec{z})}\right] \right] } \end{equation} この右辺第1項は次のように書けた。 \begin{equation} D_{KL} \left[ q_{\phi}(\vec{z}|X)||p(\vec{z}) \right]= \frac{1}{2} \sum_{d=1}^{D}\left\{ -\ln{\sigma^2_{\phi,d}(X)}-1+\sigma^2_{\phi,d}(X)+\mu_{\phi,d}^2(X) \right\} \label{eq1} \end{equation} また、潜在変数$\vec{z}$の成分は次式で与えられた。 \begin{equation} z_d=\mu_{\phi,d}(X)+\sigma_{\phi,d}(X)\epsilon_d \end{equation} 式(\ref{eq1})で理想的な最適化を実現できれば、$\mu_{\phi,d}(X)\rightarrow 0,\sigma_{\phi,d}(X)\rightarrow 1$とできる。このとき、$\vec{z}$は標準正規分布から生成される値$\vec{\epsilon}$に置き換えることができる。net.py内にある関数decodeは本来ならば$\vec{z}$を与えて画像を生成するコードであるが、実際に使われる際は標準正規分布から作られる値を与えている。従って、上記の収束が不十分であると、意図した振る舞いをしないことになる。最適化を行う際に、$\mu_{\phi,d}(X)$と$\sigma_{\phi,d}(X)$の値の変化も追跡すべきである。以上の考察に基づきnet.pyに実装されている関数get_loss_funcを以下のように変更した。
    def get_loss_func(self, C=1.0, k=1):
        """Get loss function of VAE.
        The loss value is equal to ELBO (Evidence Lower Bound)
        multiplied by -1.
        Args:
            C (int): Usually this is 1.0. Can be changed to control the
                second term of ELBO bound, which works as regularization.
            k (int): Number of Monte Carlo samples used in encoded vector.
        """
        def lf(x):
            mu, ln_var = self.encode(x)
            mean_mu, mean_sigma = calculate_means(mu, ln_var)
            batchsize = len(mu.data)
            # reconstruction loss
            rec_loss = 0
            for l in six.moves.range(k):
                z = F.gaussian(mu, ln_var)
                rec_loss += F.bernoulli_nll(x, self.decode(z, sigmoid=False)) \
                    / (k * batchsize)
            self.rec_loss = rec_loss
            kl = gaussian_kl_divergence(mu, ln_var) / batchsize
            self.loss = self.rec_loss + C * kl
            chainer.report(
                {
                    'rec_loss': rec_loss,
                    'loss': self.loss,
                    'kl': kl,
                    'mu': mean_mu,
                    'sigma': mean_sigma,
                },
                observer=self)
            return self.loss
        return lf
12行目でmuとsigmaの平均値を計算している。これに伴い、実行中にコマンドラインに表示する項目を増やしている( 25行目から29行目)。関数calculate_meansの中身は以下の通りである。
def calculate_means(mu, ln_var):
    xp = chainer.cuda.get_array_module(mu)
    mean_mu = xp.mean(mu.data)
    sigma = xp.exp(ln_var.data / 2)
    mean_sigma = xp.mean(sigma)
    return mean_mu, mean_sigma

実験-1


 先のページと同じパラメータ(epoch=100,dimz=20)で実行したときのmuとsigmaの変化は以下の通りである。
mu

sigma

訓練データに対するmuの値は0近傍を推移しているがepochの後半部分で振動しており、テストデータに対するそれは終始振動していることが分かる。sigmaの方は1からは程遠い値である。このときのトータルのlossは以下のようになる。
loss


実験-2


 次に、こちらで紹介されている実装で実験を行った。ソースコード内にnet_2.pyとして保存してある。epoch=100、dimz=100とした結果を以下に示す。
mu

sigma

muもsigmaもかなり改善されていることが分かる。muは0に、sigmaは1に近づいている。このときのトータルのlossは以下のようになる。

こちらも少しだけ改善されている。

生成画像の比較


 実験-1と2で、標準正規分布から生成した同じ乱数値から復号された画像を示す。
実験-1

実験-2

後者の方が数字であることを判別できるので精度は良くなっている(と思う)。

まとめ


 今回は、Chainerのサンプルコードに手を加えて実験を行った。muは0に、sigmaは1に近い方が復号化される画像の精度も上がることを示した。VAEを使用する場合、lossだけでなく、muやsigmaの値の推移も確認した方が良い。

2018年4月27日金曜日

Conditional Variational Auto Encoder

はじめに


 先の2回の投稿(ここここ)では、Variational Auto Encoder(VAE)をBayes推論の枠組みで解説した。今回は、Conditional Variational Auto Encoder(CAVE)をBayes推論の枠組みで説明する。

問題設定


 回帰問題を考え、$N$個のペア$(\vec{x}_n, \vec{y}_n)$が観測されているとする。$X=\{\vec{x}_1,\cdots,\vec{x}_N\}, Y=\{\vec{y}_1,\cdots,\vec{y}_N\}$と置いたとき、未観測データ$\vec{x}_{\alpha}$に対応する$\vec{y}_{\alpha}$を生成する確率分布$p(\vec{y}_{\alpha}|\vec{x}_{\alpha},X,Y)$を求めたい。潜在変数$\vec{z}$を導入し、$X$、$Y$、$\vec{z}$の同時確率分布$p(X,Y,\vec{z})$を考え、Bayesの定理を適用すると次式を得る。 \begin{equation} p(\vec{z}|X,Y) = \frac{p(Y|X,\vec{z})p(\vec{z})}{p(Y|X)} \label{eq9} \end{equation} ただし、式変形の途中で$p(X|\vec{z})=p(X)$を用いた。事後確率$p(\vec{z}|X,Y)$が求まれば、次式により$\vec{y}_{\alpha}$を生成する確率分布を求めることができる。 \begin{equation} p(\vec{y}_{\alpha}|\vec{x}_{\alpha},X,Y)=\int d\vec{z}\;p(\vec{y}_{\alpha}|\vec{x}_{\alpha},\vec{z})p(\vec{z}|X,Y) \label{eq3} \end{equation} 事後確率$p(\vec{z}|X,Y)$を求めることが目的である。

最適化すべき量


 $p(\vec{z}|X,Y)$を直接求めることはせず、パラメータ$\phi$を持つ関数$q_{\phi}(\vec{z}|X,Y)$を導入し、次のKullback Leibler divergenceを最小にすることを考える。 \begin{equation} D_{KL} \left[ q_{\phi}(\vec{z}|X,Y)||p(\vec{z}|X,Y) \right]=\int d\vec{z}\;q_{\phi}(\vec{z}|X,Y) \ln{ \frac{ q_{\phi}(\vec{z}|X,Y) } { p(\vec{z}|X,Y) } } \end{equation} これを変形すると次式を得る。 \begin{equation} D_{KL} \left[ q_{\phi}(\vec{z}|X,Y)||p(\vec{z}|X,Y) \right] = D_{KL} \left[ q_{\phi}(\vec{z}|X,Y)||p(\vec{z}) \right]-E_{q_{\phi}(\vec{z}|X,Y)}\left[\ln{p(Y|X,\vec{z})}\right]+\ln{p(Y|X)} \label{eq1} \end{equation} ただし、式変形の途中で式(\ref{eq9})を用いた。式(\ref{eq1})右辺にある$\ln{p(Y|X)}$は$\phi$に依存せず、観測値だけから決まる定数である。従って、次式が成り立つ。 \begin{equation} \min_{\phi} D_{KL} \left[ q_{\phi}(\vec{z}|X,Y)||p(\vec{z}|X,Y) \right] = \min_{\phi} {\left[ D_{KL} \left[ q_{\phi}(\vec{z}|X,Y)||p(\vec{z}) \right]-E_{q_{\phi}(\vec{z}|X,Y)}\left[\ln{p(Y|X,\vec{z})}\right] \right] } \label{eq2} \end{equation} 式(\ref{eq2})の右辺第1項を小さく、第2項の期待値を大きくすれば良い。第1項は$q_{\phi}(\vec{z}|X,Y)$をできるだけ$p(\vec{z})$に近い形の分布にすることを要求し、この分布の下で対数尤度$\ln{p(Y|X,\vec{z})}$の期待値を大きくすることを第2項は要求する。第1項は正則化項に相当する。

KL divergenceの計算


 式(\ref{eq2})の右辺第1項を考える。いま次の仮定をおく。 \begin{eqnarray} q_{\phi}(\vec{z}|X,Y)&=&\mathcal{N}(\vec{z}|\vec{\mu}_{\phi}(X,Y),\Sigma_{\phi}(X,Y)) \\ p(\vec{z})&=&\mathcal{N}(\vec{z}|\vec{0},I_D) \end{eqnarray} ここで、$\vec{z}$の次元を$D$とした。$I_D$は$D\times D$の単位行列である。どちらの分布も正規分布とし、$q_{\phi}(\vec{z}|X,Y)$の平均と共分散行列は$\phi,X,Y$から決まる量とする。これらは、入力$X,Y$、パラメータ$\phi$のニューラルネットワークを用いて計算される。一方、$p(\vec{z})$の方は平均0、分散1の標準正規分布である。このとき、$D_{KL} \left[ q_{\phi}(\vec{z}|X,Y)||p(\vec{z}) \right]$は解析的に計算することができる。 \begin{equation} D_{KL} \left[ q_{\phi}(\vec{z}|X,Y)||p(\vec{z}) \right]=\frac{1}{2}\left[ -\ln{|\Sigma_{\phi}(X,Y)|} -D +\mathrm{Tr}\left(\Sigma_{\phi}(X,Y)\right)+\vec{\mu}_{\phi}(X,Y)^T\vec{\mu}_{\phi}(X,Y) \right] \label{eq4} \end{equation}

ここまでの処理の流れ


 式(\ref{eq2})を計算する際の手順は以下のようになる。
分布$q_{\phi}(\vec{z}|X,Y)$は$X$と$Y$から$\vec{z}$を生成するEncoder、$p(Y|X,\vec{z})$は$X$と$\vec{z}$から$Y$を生成するDecoderとみなすことができる。青色で示した部分は最小化すべき量であり、赤字はサンプリングするステップである。青色の式の和を勾配降下法により最小にするが、その際、誤差逆伝播ができなければならない。$q_{\phi}(\vec{z}|X,Y)$はその$\phi$依存性のため誤差逆伝播時の微分鎖の中に組み込まれるが、サンプリングという処理の勾配を定義することができない。対数尤度の期待値の計算に工夫が必要である。

対数尤度の期待値の計算


 計算したい式は次式である。 \begin{equation} E_{q_{\phi}(\vec{z}|X,Y)}\left[\ln{p(Y|X,\vec{z})}\right]=\int d\vec{z}\;q_{\phi}(\vec{z}|X,Y)\ln{p(Y|X,\vec{z})} \end{equation} この式に再パラメータ化トリック(re-parametrization trick)を適用する。すなわち \begin{equation} \vec{z}\sim\mathcal{N}(\vec{z}|\vec{\mu}_{\phi}(X,Y),\Sigma_{\phi}(X,Y)) \end{equation} の代わりに \begin{eqnarray} \vec{\epsilon}&\sim&\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\\ \vec{z}&=& \vec{\mu}_{\phi}(X,Y)+\Sigma_{\phi}^{1/2}(X,Y)\vec{\epsilon} \label{eq7} \end{eqnarray} を用いてサンプリングを行う。これを用いて期待値を書き直すと次式を得る。 \begin{equation} E_{q_{\phi}(\vec{z}|X,Y)}\left[\ln{p(Y|X,\vec{z})}\right]=\int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\ln{p(Y|X, \vec{z}=\vec{\mu}_{\phi}(X,Y)+\Sigma_{\phi}^{1/2}(X,Y)\vec{\epsilon})} \label{eq11} \end{equation} 処理の流れは以下のように変更される。
上図であれば誤差逆伝播が可能となる。

未観測データの生成


 未観測データ$\vec{y}_{\alpha}$を生成する確率分布は次式で与えられた。 \begin{equation} p(\vec{y}_{\alpha}|\vec{x}_{\alpha},X,Y)=\int d\vec{z}\;p(\vec{y}_{\alpha}|\vec{x}_{\alpha},\vec{z})p(\vec{z}|X,Y) \end{equation} 事後確率$p(\vec{z}|X,Y)$の近似解$q_{\phi}(\vec{z}|X,Y)$を用いると \begin{equation} p(\vec{y}_{\alpha}|\vec{x}_{\alpha},X,Y)\approx\int d\vec{z}q_{\phi}(\vec{z}|X,Y)p(\vec{y}_{\alpha}|\vec{x}_{\alpha},\vec{z}) \end{equation} を得る。先と同様に再パラメータ化トリックを適用すると \begin{equation} p(\vec{y}_{\alpha}|\vec{x}_{\alpha},X,Y)\approx\int d\vec{\epsilon}\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)p(\vec{y}_{\alpha}|\vec{x}_{\alpha}, \vec{z}=\vec{\mu}_{\phi}(X,Y)+\Sigma_{\phi}^{1/2}(X,Y)\vec{\epsilon}) \label{eq10} \end{equation} となる。

実装に向けた詳細な計算


 最初に$\vec{\mu}_{\phi}(X,Y)$と$\Sigma_{\phi}(X,Y)$を次のように置く。 \begin{eqnarray} \vec{\mu}_{\phi}(X,Y)&=&(\mu_{\phi,1}(X,Y),\cdots,\mu_{\phi,D}(X,Y))^T \label{eq5}\\ \Sigma_{\phi}(X,Y)&=&\mathrm{diag}(\sigma^2_{\phi,1}(X,Y),\cdots,\sigma^2_{\phi,D}(X,Y)) \label{eq6} \end{eqnarray} このとき式(\ref{eq4})は次式となる。 \begin{equation} D_{KL} \left[ q_{\phi}(\vec{z}|X,Y)||p(\vec{z}) \right]= \frac{1}{2} \sum_{d=1}^{D}\left\{ -\ln{\sigma^2_{\phi,d}(X,Y)}-1+\sigma^2_{\phi,d}(X,Y)+\mu_{\phi,d}^2(X,Y) \right\} \label{eq8} \end{equation} また、$\vec{z}$の成分は次式で与えられる。 \begin{equation} z_d=\mu_{\phi,d}(X,Y)+\sigma_{\phi,d}(X,Y)\epsilon_d \end{equation} 観測値が独立同分布に従うと仮定すると、式(\ref{eq11})の中にある対数尤度は以下のように変形される。 \begin{equation} \ln{p(Y|X,\vec{z})}= \sum^{N}_{n=1}\ln{p(\vec{y}_n|\vec{x}_n,\vec{z})} \end{equation} さらに計算を進めるには、具体的に$X,Y$として、何を与えるか決定しなければならない。 ここでは、$X$として0から9までのラベルを、$Y$としてMNISTの画像(2値画像)を与えることにする。$X$の各観測値$\vec{x}_n$は$9$次元のone-hotベクトルで表現される。各画素が独立同分布に従うと仮定すると、$\vec{y}_n$の次元数を$M$として \begin{equation} \ln{p(\vec{y}_n|\vec{x}_n,\vec{z})}=\sum_{m=1}^{M}\ln{p(y_{n,m}|\vec{x}_n,\vec{z})} \end{equation} と書くことができる。いま考える画像は0と1から構成されるから、$p(y_{n,m}|\vec{x}_n,\vec{z})$として0と1を生成するBernoulli分布を仮定する。 \begin{eqnarray} p(y_{n,m}|\vec{x}_n,\vec{z})&=&\mathrm{Bern}\left(y_{n,m}|\eta_{\theta,m}\left(\vec{x}_n,\vec{z}\right)\right) \\ \mathrm{Bern}(x|\eta)&=&\eta^{x}(1-\eta)^{1-x} \end{eqnarray} $\eta_{\theta,m}\left(\vec{x}_n,\vec{z}\right)$は、入力が$\vec{x}_n$と$\vec{z}$、パラメータとして$\theta$を持つニューラルネットワークで学習される。以上を踏まえて処理の流れを書き直すと下図となる。

次に式(\ref{eq10})を考える。これは、観測値$X,Y$とラベル$\vec{x}_{\alpha}$が与えられときの$\vec{y}_{\alpha}$の実現確率である。 \begin{equation} p(\vec{y}_{\alpha}|\vec{x}_{\alpha},X,Y)\approx \int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\;p(\vec{y}_{\alpha}|\vec{x}_{\alpha},\vec{z}) \end{equation} ここで、$z_d=\mu_{\phi,d}(X)+\sigma_{\phi,d}(X)\epsilon_d$である。上式は以下のように書くことができる。 \begin{equation} \prod_{m=1}^M p(y_{\alpha,m}|\vec{x}_\alpha,X,Y)\approx \int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\;\prod_{m=1}^M p(y_{\alpha,m}|\vec{x}_\alpha,\vec{z}) \end{equation} すなわち、要素$y_{\alpha,m}$ごとに次式が成り立つ。 \begin{equation} p(y_{\alpha,m}|\vec{x}_\alpha,X,Y)\approx \int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\;p(y_{\alpha,m}|\vec{x}_\alpha,\vec{z}) \end{equation} $p(y_{\alpha,m}|\vec{x}_\alpha,\vec{z})$としてBernoulli分布を仮定したから \begin{equation} p(y_{\alpha,m}|\vec{x}_\alpha,X,Y)\approx \int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\;\mathrm{Bern}(y_{\alpha,m}|\eta_{\theta,m}(\vec{x}_\alpha,\vec{z})) \end{equation} となる。確率分布$p(y_{\alpha,m}|\vec{x}_\alpha,X,Y)$の下での$y_{\alpha,m}$の期待値は \begin{eqnarray} <y_{\alpha,m}>&=&\sum_{y_{\alpha,m}=0,1} y_{\alpha,m}\;p(y_{\alpha,m}|\vec{x}_\alpha,X,Y) \\ &\approx& \int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\;\sum_{y_{\alpha,m}=0,1} y_{\alpha,m} \mathrm{Bern}(y_{\alpha,m}|\eta_{\theta,m}(\vec{x}_\alpha,\vec{z})) \\ &=& \int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\;\eta_{\theta,m}(\vec{x}_\alpha,\vec{z}) \end{eqnarray} となる。$\vec{z}$は$\vec{\epsilon}$に依存する項であることに注意する。$\eta_{\theta,m}(\vec{x}_\alpha,\vec{z})$はDecoderの出力である。上式から、復号化した結果を得るには、$\eta_{\theta,m}(\vec{x}_\alpha,\vec{z})$を標準正規分布に従ってサンプリングすれば良いことが分かる。さらに、式(\ref{eq8})のKullback Leibler divergenceを十分小さくできれば、すなわち、$\sigma_{\phi,d}(X,Y)\rightarrow 1,\mu_{\phi,d}(X,Y)\rightarrow 0$とできれば、$\vec{z}=\vec{\epsilon}$とすることができるので、標準正規分布から生成した値$\vec{\epsilon}$と$\vec{x}_\alpha$からDecoderの出力を直接得ることができる。

まとめ


 今回は、CVAEをBayes推定の枠組みで説明した。前回のVAEの論法とほとんど同じである。VAEでは未観測データ$\vec{x}$が従う確率分布$p(\vec{x}|X)$を求める過程でVAEの構造を見出した。一方、CVAEでは未観測データ$\vec{x}$に対応する$\vec{y}$が従う確率分布$p(\vec{y}|\vec{x},X,Y)$を求める過程でCVAEの構造が現れることを見た。その構造は、VAEに少し手を加えれば実現できる程度のものである。ChainerのVAEのサンプルコードをベースにすればすぐに実装できそうである。

2018年4月22日日曜日

Variational Auto Encoder 〜その2〜

はじめに


 先のページで、Variational Auto Encoder(VAE)をBayes推論の枠組みで解説し、Chainerのサンプルコードをみた。今回は、サンプルコードを実際に動かし、その動作を確認する。

前回の補足


 前回の式(16)は、観測値$X$の下での未知変数$\vec{x}$の実現確率であった。 \begin{equation} p(\vec{x}|X)\approx \int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\;p(\vec{x}|\vec{z}) \end{equation} ここで、$z_d=\mu_{\phi,d}(X)+\sigma_{\phi,d}(X)\epsilon_d$である。$\vec{x}$の各成分が独立同分布で生成されると仮定すると、以下のように書き換えることができる。 \begin{equation} \prod_{m=1}^M p(x_{m}|X)\approx \int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\;\prod_{m=1}^M p(x_m|\vec{z}) \end{equation} すなわち、要素$x_m$ごとに次式が成り立つ。 \begin{equation} p(x_{m}|X)\approx \int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\;p(x_m|\vec{z}) \end{equation} $p(x_m|\vec{z})$としてBernoulli分布を仮定したから \begin{equation} p(x_{m}|X)\approx \int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\;\mathrm{Bern}(x_m|\eta_{\theta,m}(\vec{z})) \end{equation} となる。確率分布$p(x_{m}|X)$の下での$x_m$の期待値は \begin{eqnarray} <x_m>&=&\sum_{x_m=0,1} x_m\;p(x_{m}|X) \\ &\approx& \int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\;\sum_{x_m=0,1} x_m \mathrm{Bern}(x_m|\eta_{\theta,m}(\vec{z})) \\ &=& \int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\;\eta_{\theta,m}(\vec{z}) \end{eqnarray} となる。$\vec{z}$は$\vec{\epsilon}$に依存する項であることに注意する。ここまでの議論で言えることは、復号化した結果を得るには、$\eta_{\theta,m}(\vec{z})$を標準正規分布に従ってサンプリングすれば良いということである。$\eta_{\theta,m}(\vec{z})$はDecoderの出力である。

Chainerの実装の確認


 前回は、net.pyを見たので、今回はtrain_vae.pyを見る。trainerを用いた実装部分は特に指摘することはないので、結果を描画している箇所を解説する。最初は訓練データに関わる描画部分である。 適当に画像を9枚選択し、これを関数__call__で符号化・復号化している。前回指摘したように、復号化の際、$\sigma_{\phi,d}(X)$は無視されている。計算のあと元画像と復号化画像を保存している。epochを100とした結果は以下の通りである。

訓練画像


復号化した訓練画像

次はテスト画像に関わる部分である。 ここでも適当に9枚の画像を選択し、元画像と復号化画像を保存している。epochを100とした結果は以下の通りである。

テスト画像


復号化したテスト画像

最後に、標準正規分布に従う値$\vec{z}$から復号化する部分である。 9個の乱数$\vec{z}$を作り、関数decodeを呼び出している。epochを100とした結果は以下の通りである。
訓練・テスト画像を符号化・復号化した結果と比べるとかなり精度の悪い結果である。関数decodeは$\eta_{\theta,m}(\vec{z})$を出力する。上で見たように本来の$\vec{z}$は、$z_d=\mu_{\phi,d}(X)+\sigma_{\phi,d}(X)\epsilon_d$として与えらるべきものである。精度が悪いのは、$\vec{z}$を標準正規分布に置き換えたことが原因である。ところで、勾配降下法で最小にすべき式の1つが次式であった(前回の式(19))。 \begin{equation} D_{KL} \left[ q_{\phi}(\vec{z}|X)||p(\vec{z}) \right]= \frac{1}{2} \sum_{d=1}^{D}\left\{ -\ln{\sigma^2_{\phi,d}(X)}-1+\sigma^2_{\phi,d}(X)+\mu_{\phi,d}^2(X) \right\} \end{equation} これを十分小さくできれば、すなわち、$\sigma_{\phi,d}\rightarrow 1, \mu_{\phi,d}\rightarrow 0$とできれば、標準正規分布による置き換えは意味があるものになる。残念ながらepochを1000としても大して精度は良くならない。Chainerのサンプル実装を変更する必要があるかもしれない。

まとめ


 今回は、$<x_m>$が$\eta_{\theta,m}(\vec{z})$を求めることに帰着すること示し、Chainerのサンプルコードの計算結果を考察した。 さらに、標準正規分布による$\vec{z}$から計算した画像の精度が悪い理由についても述べた。改善するには、epoch数を増やすだけではなくコードの見直し(多層化、初期化関数の変更)も必要であろう。次回はこの辺りのことについてまとめたい。

2018年4月15日日曜日

Variational Auto Encoder

はじめに


 Variational Auto Encoder(VAE)をBayes推論の枠組みで解説し、Chainerのサンプルコードを読解する。

問題設定


 観測値$X=\{\vec{x}_1,\cdots,\vec{x}_N\}$が与えられたとき、未知の値$\vec{x}_*$を生成する確率分布$p(\vec{x}_*|X)$を求めたい。潜在変数$\vec{z}$を導入し、$X$と$\vec{z}$の同時確率分布$p(X,\vec{z})$を考え、Bayesの定理を適用すると次式を得る。 \begin{equation} p(\vec{z}|X) = \frac{p(X|\vec{z})p(\vec{z})}{p(X)} \label{eq9} \end{equation} 事後確率$p(\vec{z}|X)$が求まれば、次式により$\vec{x}_*$を生成する確率分布を求めることができる。 \begin{equation} p(\vec{x}_*|X)=\int d\vec{z}\;p(\vec{x}_*|\vec{z})p(\vec{z}|X) \label{eq3} \end{equation} 事後確率$p(\vec{z}|X)$を求めることが目的である。

最適化すべき量


 $p(\vec{z}|X)$を直接求めることはせず、パラメータ$\phi$を持つ関数$q_{\phi}(\vec{z}|X)$を導入し、次のKullback Leibler divergenceを最小にすることを考える。 \begin{equation} D_{KL} \left[ q_{\phi}(\vec{z}|X)||p(\vec{z}|X) \right]=\int d\vec{z}\;q_{\phi}(\vec{z}|X) \ln{ \frac{ q_{\phi}(\vec{z}|X) } { p(\vec{z}|X) } } \end{equation} これを変形すると次式を得る。 \begin{equation} D_{KL} \left[ q_{\phi}(\vec{z}|X)||p(\vec{z}|X) \right] = D_{KL} \left[ q_{\phi}(\vec{z}|X)||p(\vec{z}) \right]-E_{q_{\phi}(\vec{z}|X)}\left[\ln{p(X|\vec{z})}\right]+\ln{p(X)} \label{eq1} \end{equation} ただし、式変形の途中で式(\ref{eq9})を用いた。式(\ref{eq1})右辺にある$\ln{p(X)}$は$\phi$に依存せず、観測値だけから決まる定数である。従って、次式が成り立つ。 \begin{equation} \min_{\phi} D_{KL} \left[ q_{\phi}(\vec{z}|X)||p(\vec{z}|X) \right] = \min_{\phi} {\left[ D_{KL} \left[ q_{\phi}(\vec{z}|X)||p(\vec{z}) \right]-E_{q_{\phi}(\vec{z}|X)}\left[\ln{p(X|\vec{z})}\right] \right] } \label{eq2} \end{equation} 式(\ref{eq2})の右辺第1項を小さく、第2項の期待値を大きくすれば良い。第1項は$q_{\phi}(\vec{z}|X)$をできるだけ$p(\vec{z})$に近い形の分布にすることを要求し、この分布の下で対数尤度$\ln{p(X|\vec{z})}$の期待値を大きくすることを第2項は要求する。第1項は正則化項に相当する。

KL divergenceの計算


 式(\ref{eq2})の右辺第1項を考える。いま次の仮定をおく。 \begin{eqnarray} q_{\phi}(\vec{z}|X)&=&\mathcal{N}(\vec{z}|\vec{\mu}_{\phi}(X),\Sigma_{\phi}(X)) \\ p(\vec{z})&=&\mathcal{N}(\vec{z}|\vec{0},I_D) \end{eqnarray} ここで、$\vec{z}$の次元を$D$とした。$I_D$は$D\times D$の単位行列である。どちらの分布も正規分布とし、$q_{\phi}(\vec{z}|X)$の平均と共分散行列は$\phi$と$X$から決まる量とする。これらは、入力$X$、パラメータ$\phi$のニューラルネットワークを用いて計算される。一方、$p(\vec{z})$の方は平均0、分散1の標準正規分布である。このとき、$D_{KL} \left[ q_{\phi}(\vec{z}|X)||p(\vec{z}) \right]$は解析的に計算することができる。 \begin{equation} D_{KL} \left[ q_{\phi}(\vec{z}|X)||p(\vec{z}) \right]=\frac{1}{2}\left[ -\ln{|\Sigma_{\phi}(X)|} -D +\mathrm{Tr}\left(\Sigma_{\phi}(X)\right)+\vec{\mu}_{\phi}(X)^T\vec{\mu}_{\phi}(X) \right] \label{eq4} \end{equation}

ここまでの処理の流れ


 式(\ref{eq2})の最適化を行う際に勾配降下法を用いる。処理の流れは以下のようになる(下図参照)。
分布$q_{\phi}(\vec{z}|X)$は$X$から$\vec{z}$を生成するEncoder、$p(X|\vec{z})$は$\vec{z}$から$X$を生成するDecoderとみなすことができる。青色で示した部分は最小化すべき量であり、赤字はサンプリングするステップである。勾配降下法を実現するには、誤差逆伝播ができなければならない。$q_{\phi}(\vec{z}|X)$はその$\phi$依存性のため誤差逆伝播時の微分鎖の中に組み込まれるが、サンプリグという処理の勾配を定義することができない。対数尤度の期待値の計算に工夫が必要である。

対数尤度の期待値の計算


 計算したい式は次式である。 \begin{equation} E_{q_{\phi}(\vec{z}|X)}\left[\ln{p(X|\vec{z})}\right]=\int d\vec{z}\;q_{\phi}(\vec{z}|X)\ln{p(X|\vec{z})} \end{equation} この式に再パラメータ化トリック(re-parametrization trick)を適用する。すなわち \begin{equation} \vec{z}\sim\mathcal{N}(\vec{z}|\vec{\mu}_{\phi}(X),\Sigma_{\phi}(X)) \end{equation} の代わりに \begin{eqnarray} \vec{\epsilon}&\sim&\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\\ \vec{z}&=& \vec{\mu}_{\phi}(X)+\Sigma_{\phi}^{1/2}(X)\vec{\epsilon} \label{eq7} \end{eqnarray} を用いてサンプリングを行う。これを用いて期待値を書き直すと次式を得る。 \begin{equation} E_{q_{\phi}(\vec{z}|X)}\left[\ln{p(X|\vec{z})}\right]=\int d\vec{\epsilon}\;\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)\ln{p(X| \vec{z}=\vec{\mu}_{\phi}(X)+\Sigma_{\phi}^{1/2}(X)\vec{\epsilon})} \end{equation} このときの処理の流れは以下のようになる(下図参照)。
上図であれば誤差逆伝播が可能となる。

未知変数の生成


 未知変数を生成する確率分布は次式で与えられた。 \begin{equation} p(\vec{x}_*|X)=\int d\vec{z}\;p(\vec{x}_*|\vec{z})p(\vec{z}|X) \end{equation} 事後確率$p(\vec{z}|X)$の近似解$q_{\phi}(\vec{z}|X)$を用いると \begin{equation} p(\vec{x}_*|X)\approx\int d\vec{z}q_{\phi}(\vec{z}|X)p(\vec{x}_*|\vec{z}) \end{equation} を得る。先と同様に再パラメータ化トリックを適用すると \begin{equation} p(\vec{x}_*|X)\approx\int d\vec{\epsilon}\mathcal{N}(\vec{\epsilon}|\vec{0},I_D)p(\vec{x}_*| \vec{z}=\vec{\mu}_{\phi}(X)+\Sigma_{\phi}^{1/2}(X)\vec{\epsilon}) \end{equation} となる。

Chainer実装の確認


 ChainerのサンプルコードにVAEがある。これはMNISTデータセットにVAEを適用したものである。MNISTは2値画像であるから$\vec{x}_n$として0と1が784(=28$\times$28)個並んだベクトルを考えることになる。実際にコードを見て行く前に先に導出した式をもう少し詳細に計算しておく。

 最初に$\vec{\mu}_{\phi}(X)$と$\Sigma_{\phi}(X)$を次のように置く。 \begin{eqnarray} \vec{\mu}_{\phi}(X)&=&(\mu_{\phi,1}(X),\cdots,\mu_{\phi,D}(X))^T \label{eq5}\\ \Sigma_{\phi}(X)&=&\mathrm{diag}(\sigma^2_{\phi,1}(X),\cdots,\sigma^2_{\phi,D}(X)) \label{eq6} \end{eqnarray} このとき式(\ref{eq4})は次式となる。 \begin{equation} D_{KL} \left[ q_{\phi}(\vec{z}|X)||p(\vec{z}) \right]= \frac{1}{2} \sum_{d=1}^{D}\left\{ -\ln{\sigma^2_{\phi,d}(X)}-1+\sigma^2_{\phi,d}(X)+\mu_{\phi,d}^2(X) \right\} \label{eq8} \end{equation} また、$\vec{z}$の成分は次式で与えられる。 \begin{equation} z_d=\mu_{\phi,d}(X)+\sigma_{\phi,d}(X)\epsilon_d \end{equation} 観測値が独立同分布に従うと仮定すると対数尤度は以下のように変形される。 \begin{equation} \ln{p(X|\vec{z})}= \sum^{N}_{n=1}\ln{p(\vec{x}_n|\vec{z})} \end{equation} $\vec{x}_n$の次元数を$M$(=784)とすると \begin{equation} \ln{p(\vec{x}_n|\vec{z})}=\sum_{m=1}^{M}\ln{p(x_{n,m}|\vec{z})} \end{equation} となる。いま考える画像は0と1から構成される。従って、$p(x_{n,m}|\vec{z})$として0と1を生成する確率分布であるBernoulli分布を仮定する。 \begin{eqnarray} p(x_{n,m}|\vec{z})&=&\mathrm{Bern}\left(x_{n,m}|\eta_{\theta,m}\left(\vec{z}\right)\right) \\ \mathrm{Bern}(x|\eta)&=&\eta^{x}(1-\eta)^{1-x} \end{eqnarray} $\eta_{\theta,m}\left(\vec{z}\right)$は、入力$\vec{z}$、パラメータ$\theta$のネットワークで学習される量である。 以上を踏まえて処理の流れを書き直すと下図となる。

以上で準備が整ったので順にコードを見ていく。まず最初にネットワークを定義したクラスVAEを見る。コンストラクタは以下の通り。 Encoderとして$\vec{\mu}_{\phi}(X)$と$\Sigma_{\phi}(X)$を生成する層がそれぞれ1層ずつ定義されている。Decoderとして$\vec{\eta}_{\theta}(\vec{z})$を生成する2層が定義されている。次に関数encodeを見る。 $\mu_{\phi,d}$と$\ln{\sigma_{\phi,d}^2}$を生成する処理が記述されている。次は関数decodeである。 $\vec{z}$を受け取り$\vec{\eta}_{\theta}(\vec{z})$を返す処理が記述されている。次は__call__である。 Encoderで計算した平均を入力としてDecoderを呼び出している。分散を無視して復号化している。次はget_loss_funcである。
  • 13行目:Encoderで平均と対数分散を計算する。
  • 17行目:ここから始まるループは$\vec{z}$のサンプリングのためのものである。
  • 18行目:正規分布からサンプリングする。関数F.gaussianの中で再パラメータ化トリックが実行されていることに注意する。
  • 19行目:Bernoulli分布の対数にマイナスを付けたものが計算される。
  • 23行目:式(\ref{eq8})が計算される。

  • まとめ


     今回は、VAEをBayes推論の枠組みで解説し、Chainerのサンプルコードを見た。ニューラルネットワークで計算されるのは確率分布のパラメータであることを明確に示した。言い換えると他の手法でパラメータを計算できるのであればそれでも構わないということである。計算の仮定で確率分布にいくつかの仮定(ガウス分布やBernoulli分布)をしていることに注意しなければならない。今回Bernoulli分布を使用したのはターゲットとした観測値が0と1から構成される2値画像であるためである。2値でない観測値を対象とするならそれに見合った確率分布を導入する必要がある。次回はChainerのコードを動かして得られる結果を考察したい。

    参考文献


  • Tutorial on Variational Autoencoders
  • Pattern Recognition and Machine Learning
  • ベイズ推論による機械学習入門
  • Variational Autoencoder徹底解説
  • 2018年3月11日日曜日

    強化学習 〜Fisher情報行列と自然勾配法〜

    はじめに


     先のページで方策勾配定理を導いた。すなわち、時間ステップ$t=0$から始める状態価値関数$J(\theta;s_0)$に対して次式が成り立つことを示した。 \begin{equation} \frac{\partial J(\theta;s_0)}{\partial \theta} = {\bf E}\left[\frac{\partial \ln{\pi_{\theta}(a|s)}}{\partial \theta}\;Q(s,a)\right] \end{equation} 今回は、$\theta$をベクトル$\vec{\theta}$に拡張した式 \begin{equation} \vec{\nabla}_{\theta}J(\vec{\theta};s_0) = {\bf E} \left[ \vec{\nabla}_{\theta} \ln{\pi_{\theta}(a|s)}\;Q(s,a) \right] \label{eq2} \end{equation} を考え、$J(\vec{\theta};s_0)$を勾配法で最大化する過程で用いられる手法をまとめる。以降、$J(\vec{\theta};s_0)$を$J(\vec{\theta})$と書く。

    Fisher情報行列の導出


     2つの確率分布$P(w),Q(w)$を考え、これらの間のKullback-Leibler divergenceを考える。 \begin{equation} D(P,Q)=\int dw\; P(w) \ln{\frac{P(w)}{Q(w)}} \end{equation} この量を対称化して、2つの確率分布間の「距離」を表すことができるようにする。 \begin{eqnarray} D_s(P,Q) &=&\int dw\; P(w) \ln{\frac{P(w)}{Q(w)}}+\int dw\; Q(w) \ln{\frac{Q(w)}{P(w)}}\\ &=&\int dw\; \left(P(w)-Q(w)\right) \ln{\frac{P(w)}{Q(w)}} \end{eqnarray} いま、パラメータ$\vec{\theta}$を持つモデルで表現された確率分布$P(w|\vec{\theta})$を考え、パラメータをわずかに変えた後の分布$P(w|\vec{\theta}+d\vec{\theta})$との間の距離$D_s$を計算する。 \begin{eqnarray} D_s(P(w|\vec{\theta}+d\vec{\theta}),P(w|\vec{\theta})) &=&\int dw\; \left(P(w|\vec{\theta}+d\vec{\theta})-P(w|\vec{\theta})\right) \ln{\frac{P(w|\vec{\theta}+d\vec{\theta})}{P(w|\vec{\theta})}} \\ &=&\int dw\; \delta(w|\vec{\theta}) \ln{\frac{\delta(w|\vec{\theta})+P(w|\vec{\theta})}{P(w|\vec{\theta})}} \label{eq0} \end{eqnarray} ここで、 \begin{equation} \delta(w|\vec{\theta})\equiv P(w|\vec{\theta}+d\vec{\theta})-P(w|\vec{\theta}) \end{equation} と置いた。式(\ref{eq0})は$\delta(w|\vec{\theta})$が微小量であることに注意すると以下のように変形することができる。 \begin{eqnarray} D_s(P(w|\vec{\theta}+d\vec{\theta}),P(w|\vec{\theta})) &=&\int dw\; \delta(w|\vec{\theta}) \ln{\frac{\delta(w|\vec{\theta})+P(w|\vec{\theta})}{P(w|\vec{\theta})}} \\ &=&\int dw\; \delta(w|\vec{\theta}) \ln{\left(1+\frac{\delta(w|\vec{\theta})}{P(w|\vec{\theta})}\right)} \\ &\simeq&\int dw\; \delta(w|\vec{\theta}) \frac{\delta(w|\vec{\theta})}{P(w|\vec{\theta})} \label{eq1} \end{eqnarray} ところで、$\delta(w|\vec{\theta})$は次のように計算される。 \begin{eqnarray} \delta(w|\vec{\theta}) &=&P(w|\vec{\theta}+d\vec{\theta})-P(w|\vec{\theta}) \\ &\simeq&\sum_i\;\frac{\partial P(w|\vec{\theta})}{\partial \theta_i} d\theta_i \\ &=&P(w|\vec{\theta})\sum_i\;\frac{\partial\ln{ P(w|\vec{\theta})} }{\partial\theta_i}d\theta_i \end{eqnarray} これを式(\ref{eq1})に代入する。 \begin{eqnarray} D_s(P(w|\vec{\theta}+d\vec{\theta}),P(w|\vec{\theta})) &\simeq& \int dw\; \left[P(w|\vec{\theta})\sum_i\;\frac{\partial\ln{ P(w|\vec{\theta})} }{\partial\theta_i}d\theta_i\right] \frac{P(w|\vec{\theta})\sum_j\;\frac{\partial\ln{ P(w|\vec{\theta})} }{\partial\theta_j}d\theta_j}{P(w|\vec{\theta})} \\ &=& \int dw\; \left[P(w|\vec{\theta})\sum_i\;\frac{\partial\ln{ P(w|\vec{\theta})} }{\partial\theta_i}d\theta_i\right] \sum_j\;\frac{\partial\ln{ P(w|\vec{\theta})} }{\partial\theta_j}d\theta_j \\ &=& \sum_{i,j}\;d\theta_i \left[\int dw\; P(w|\vec{\theta}) \frac{\partial\ln{ P(w|\vec{\theta})} }{\partial\theta_i} \frac{\partial\ln{ P(w|\vec{\theta})} }{\partial\theta_j}\right] d\theta_j \\ &=& \sum_{i,j}\;d\theta_i\; {\bf E}\left[ \frac{\partial\ln{ P(w|\vec{\theta})} }{\partial\theta_i} \frac{\partial\ln{ P(w|\vec{\theta})} }{\partial\theta_j}\right] d\theta_j \end{eqnarray} ここで、${\bf E}[\cdot]$は確率$P(w|\vec{\theta})$の下での期待値を表す。いま \begin{equation} F_{i,j}(\vec{\theta})\equiv {\bf E}\left[ \frac{\partial\ln{ P(w|\vec{\theta})} }{\partial\theta_i} \frac{\partial\ln{ P(w|\vec{\theta})} }{\partial\theta_j}\right] \label{eq4} \end{equation} と置くと \begin{eqnarray} D_s(P(w|\vec{\theta}+d\vec{\theta}),P(w|\vec{\theta})) &\simeq& \sum_{i,j}\;d\theta_i\;F_{i,j}(\vec{\theta})\;d\theta_j\\ &=&d\vec{\theta}^{T}F(\vec{\theta})\;d\vec{\theta} \end{eqnarray} を得る。$F(\vec{\theta})$をFisher情報行列と呼ぶ。$D_s$は微小距離の2乗に相当する量である。従って、$F(\vec{\theta})$は今考えているパラメータ空間(リーマン空間)における計量テンソルと見ることができる。

    自然勾配法


     パラメータ$\vec{\theta}=(\theta_1,\cdots,\theta_n)$の張る空間上の関数$f(\vec{\theta})$を考える。$f(\vec{\theta})$の微小変化は次式で与えられる。 \begin{equation} \delta f\equiv f(\vec{\theta}+d\vec{\theta})-f(\vec{\theta})=\vec{\nabla}f^T d\vec{\theta} \end{equation} $\delta f$が最大となる向き$d\vec{\theta}$を、$\|d\vec{\theta}\|^2=\epsilon^2$の条件の下で考える。ここで、$\epsilon$は微小な定数である。ところで、リーマン空間において 、$\|d\vec{\theta}\|^2$は計量テンソル$G(\vec{\theta})$を用いて、次のように書くことができる。 \begin{equation} \|d\vec{\theta}\|^2=d\vec{\theta}^{T}G(\vec{\theta})\;d\vec{\theta} \end{equation} 従って、$\delta f$が最大となる向きは、Lagrangeの未定乗数法を用いて、次を最大化することで求めることができる。 \begin{equation} L=\vec{\nabla}f^T d\vec{\theta} -\lambda\left(d\vec{\theta}^{T}G(\vec{\theta})\;d\vec{\theta}-\epsilon^2 \right) \end{equation} $d\theta_i$で偏微分して0と置く。 \begin{equation} \frac{\partial L}{\partial d\theta_i}=\frac{\partial f}{\partial \theta_i}-2\lambda\sum_j\;G_{i,j}(\vec{\theta})d\theta_j=0 \end{equation} これより \begin{equation} \vec{\nabla}f = 2\lambda\;G(\vec{\theta})d\vec{\theta} \end{equation} を得る。$d\vec{\theta}$について解くと \begin{equation} d\vec{\theta}\propto G^{-1}(\vec{\theta})\vec{\nabla}f \end{equation} を得る。これが微小変化$\delta f$が最大となる向きである。この向きを利用する勾配法を自然勾配法と呼ぶ。ユークリッド空間の場合は$G$を単位行列と置けば良い。

    方策勾配への適用


     $J(\vec{\theta})$の勾配を最大にする向きは、先の議論より \begin{equation} d\vec{\theta}\propto F^{-1}(\vec{\theta})\vec{\nabla}_{\theta}J(\vec{\theta}) \label{eq5} \end{equation} で与えられる。ただし、ここでの情報行列$F(\vec{\theta})$は式(\ref{eq4})の$P(w|\vec{\theta})$を$\pi_{\theta}(a|s)$に置き換えた次式で定義される。 \begin{equation} F(\vec{\theta})\equiv{\bf E} \left[ \vec{\nabla}_{\theta}\ln{\pi_{\theta}(a|s)} \vec{\nabla}_{\theta}^T\ln{\pi_{\theta}(a|s)} \right] \end{equation} 式(\ref{eq5})に式(\ref{eq2})を代入する。 \begin{equation} d\vec{\theta}\propto F^{-1}(\vec{\theta})\;{\bf E} \left[ \vec{\nabla}_{\theta} \ln{\pi_{\theta}(a|s)}\;Q(s,a) \right] \label{eq3} \end{equation} $Q(s,a)$をパラメータ$\vec{w}$を用いた次のモデルで近似することがよく行われる。 \begin{equation} Q(s,a)=\vec{w}^T \vec{\nabla}_{\theta}\ln{\pi_{\theta}(a|s)} \end{equation} これを、式(\ref{eq3})に代入すると \begin{eqnarray} d\vec{\theta} &\propto& F^{-1}(\vec{\theta})\;{\bf E} \left[ \vec{\nabla}_{\theta} \ln{\pi_{\theta}(a|s)}\;\left[\vec{w}^T \vec{\nabla}_{\theta}\ln{\pi_{\theta}(a|s)}\right] \right] \\ &=& F^{-1}(\vec{\theta})\;{\bf E} \left[ \vec{\nabla}_{\theta}\ln{\pi_{\theta}(a|s)} \vec{\nabla}_{\theta}^T\ln{\pi_{\theta}(a|s)} \right] \vec{w}\\ &=& F^{-1}(\vec{\theta})\;F(\vec{\theta})\;\vec{w}\\ &=& \vec{w} \end{eqnarray} を得る。つまり、$J(\vec{\theta})$を更新する際の$\vec{\theta}$の向きは、$\vec{w}$と一致することになる(というより、こうなるように$Q(s,a)$を近似するのだろう)。

    参考文献


    2018年2月18日日曜日

    強化学習 〜ベルマン最適方程式〜

    はじめに


     先のページでベルマン方程式の導出を行った。この議論に追記を行い、ベルマン最適方程式を示す。

    不動点方程式


     状態価値関数$V(s)$に対し、次のベルマン方程式が成り立つことを見た。 \begin{equation} V(s)=\sum_{s^{\prime},a} P(s^{\prime}|s,a)\pi(a|s)\left[r(s,a,s^{\prime})+\gamma V(s^{\prime})\right] \end{equation} ここで、右辺第1項,第2項に対し \begin{eqnarray} \eta^{V}(s)&\equiv&\sum_{s^{\prime},a}P(s^{\prime}|s,a)\pi(a|s)r(s,a,s^{\prime}) \\ M^{V}(s,s^{\prime})&\equiv&\sum_{a}P(s^{\prime}|s,a)\pi(a|s) \end{eqnarray} を定義すると \begin{equation} V(s)=\eta^{V}(s)+\gamma \sum_{s^{\prime}}M^{V}(s,s^{\prime})V(s^{\prime}) \end{equation} を得る。いま、状態が$D$個に離散化されている場合を考えると、$V(s)$は$D$次元ベクトル$\vec{V}$の第$s$番目の成分と見ることができる。$M^{V}(s,s^{\prime})$は行列$M^{V}$の$(s,s^{\prime})$成分である。従って、次式を得る。 \begin{equation} \vec{V}=\vec{\eta}^{\;V}+\gamma M^{V}\vec{V} \end{equation} この式の右辺を眺めると、平行移動と線形変換の組み合わせ、すなわち、アフィン変換であることが分かる。このアフィン変換をベルマン作用素と呼ぶ。ベルマン作用素を$T^{V}$で表すと \begin{equation} \vec{V}=T^{V}\vec{V} \end{equation} となる。これは、変換後の自身が自身に等しくなることから不動点方程式であり、$0<\gamma<1$のとき唯一解$\vec{V}$を持つことが知られている。

     次に、行動価値関数$Q(s,a)$について考える。$Q(s,a)$のベルマン方程式は次式であった。 \begin{equation} Q(s,a)=\sum_{s^{\prime}} P(s^{\prime}|s,a)\left[r(s,a,s^{\prime})+\gamma \sum_{a^{\prime}}\pi(a^{\prime}|s^{\prime})Q(s^{\prime},a^{\prime})\right] \end{equation} ここで \begin{eqnarray} \eta^{Q}(s,a)&\equiv&\sum_{s^{\prime}}P(s^{\prime}|s,a)r(s,a,s^{\prime}) \\ M^{Q}(s,a,s^{\prime},a^{\prime})&\equiv&P(s^{\prime}|s,a)\pi(a^{\prime}|s^{\prime}) \end{eqnarray} を導入すると \begin{equation} Q(s,a)=\eta^{Q}(s,a)+\gamma\sum_{s^{\prime},a^{\prime}}M^{Q}(s,a,s^{\prime},a^{\prime})Q(s^{\prime},a^{\prime}) \end{equation} を得る。今度は状態だけでなく行動も$D^{\prime}$個に離散化されている場合を考える。このとき$Q(s,a)$は$D\times D^{\prime}$次元のベクトルになる。$(s,a)$を1つの添え字で表せば、状態価値関数のときと同じ議論を繰り返すことができ、次式を得る。 \begin{equation} \vec{Q}=\vec{\eta}^{\;Q}+\gamma M^{Q}\vec{Q} \end{equation} 右辺はアフィン変換であり、ベルマン作用素$T^{Q}$を使うと \begin{equation} \vec{Q}=T^{Q}\vec{Q} \end{equation} と書くことができる。これも不動点方程式であり、$0<\gamma<1$のとき唯一解$\vec{Q}$を持つことが知られている。

    ベルマン最適方程式


     $V(s)$と$Q(s,a)$のベルマン方程式を再度示す。 \begin{eqnarray} V(s)&=&\sum_{s^{\prime},a} P(s^{\prime}|s,a)\pi(a|s)\left[r(s,a,s^{\prime})+\gamma V(s^{\prime})\right]\\ Q(s,a)&=&\sum_{s^{\prime}} P(s^{\prime}|s,a)\left[r(s,a,s^{\prime})+\gamma \sum_{a^{\prime}}\pi(a^{\prime}|s^{\prime})Q(s^{\prime},a^{\prime})\right] \end{eqnarray} これらは、方策$\pi$を用いて、ある状態に対する行動を選択している。いま、方策$\pi$を介さずに、最適な行動を直接選択することを考える。上式の$\sum_{a}\pi(a|s)$を形式的に$\max_a$で置き換えると次式を得る。 \begin{eqnarray} V^{*}(s)&=&\max_{a}\sum_{s^{\prime}} P(s^{\prime}|s,a)\left[r(s,a,s^{\prime})+\gamma V^{*}(s^{\prime})\right]\\ Q^{*}(s,a)&=&\sum_{s^{\prime}} P(s^{\prime}|s,a)\left[r(s,a,s^{\prime})+\gamma \max_{a^{\prime}}Q^{*}(s^{\prime},a^{\prime})\right] \end{eqnarray} これらは、最適状態価値関数$V^{*}(s)$と最適行動価値関数$Q^{*}(s,a)$に対し、厳密に成り立つことが知られており、ベルマン最適方程式と呼ばれる。これらについては不動点方程式の形に変形することはできないが、やはり、唯一解が存在することが知られている。

    参考文献


    2018年2月13日火曜日

    強化学習 〜方策勾配定理の導出〜

    はじめに


     前回に引き続き、強化学習のテキスト「これからの強化学習」に出てくる方策勾配定理を導出する。自身のための覚書である。

    最大化すべき目的関数


     状態価値関数$V(s)$は次式で定義された。 \begin{equation} V(s)={\bf E}\left[G_t|S_t=s\right] \end{equation} いま、 方策を表す確率$\pi(a|s)$を、パラメータ$\theta$に依存する微分可能な関数でモデル化し、 時間ステップ$t=0$から始める状態価値関数を考える。 \begin{eqnarray} V(s_0)&=&{\bf E}\left[G_0|S_0=s_0\right] \\ &=&{\bf E}\left[\sum_{t=1}^{\infty}\gamma^{t-1}R_t|S_0=s_0\right] \\ &\equiv& J(\theta;s_0) \end{eqnarray} これを$\theta$に関して最大化する。

    方策勾配定理の導出


     先に見たように、状態価値関数$V(s)$と行動価値関数$Q(s,a)$の間には次式が成り立つ。 \begin{equation} V(s)=\sum_a \pi(a|s)Q(s,a) \end{equation} $\pi(a|s)$が$\theta$に依存するとき、$V(s)$と$Q(s,a)$も$\theta$に依存する。従って次式が成り立つ。 \begin{equation} \frac{\partial V(s)}{\partial \theta}=\sum_a \left[\frac{\partial \pi(a|s)}{\partial \theta}Q(s,a)+\pi(a|s)\frac{\partial Q(s,a)}{\partial \theta}\right] \label{eq0} \end{equation} ここで、先に示した$Q(s,a)$についてのベルマン方程式 \begin{equation} Q(s,a)=\sum_{s^{\prime}} P(s^{\prime}|s,a)\left[r(s,a,s^{\prime})+\gamma\;V(s^{\prime})\right] \end{equation} の両辺を$\theta$で微分する。上式の右辺第1項は$\theta$に依存しないことに注意すると \begin{equation} \frac{\partial Q(s,a)}{\partial \theta}=\gamma\;\sum_{s^{\prime}} P(s^{\prime}|s,a)\;\frac{\partial V(s^{\prime})}{\partial \theta} \end{equation} を得る。これを、式($\ref{eq0}$)に代入する。 \begin{eqnarray} \frac{\partial V(s)}{\partial \theta} &=& \sum_a \left\{\frac{\partial \pi(a|s)}{\partial \theta}Q(s,a) + \pi(a|s) \left[ \gamma\;\sum_{s^{\prime}} P(s^{\prime}|s,a)\;\frac{\partial V(s^{\prime})}{\partial \theta} \right] \right\}\\ &=& f(s) + \sum_a \pi(a|s) \gamma\;\sum_{s^{\prime}} P(s^{\prime}|s,a)\;\frac{\partial V(s^{\prime})}{\partial \theta} \end{eqnarray} ここで、$f(s)\equiv\sum_a \frac{\partial \pi(a|s)}{\partial \theta}Q(s,a)$とした。再帰的に代入を繰り返す。 \begin{eqnarray} \frac{\partial V(s)}{\partial \theta} &=& f(s) + \sum_a \pi(a|s) \gamma\;\sum_{s^{\prime}} P(s^{\prime}|s,a) \left[ f(s^{\prime}) + \sum_{a^{\prime}} \pi(a^{\prime}|s^{\prime}) \gamma\;\sum_{s^{\prime\prime}} P(s^{\prime\prime}|s^{\prime},a^{\prime}) \frac{\partial V(s^{\prime\prime})}{\partial \theta} \right]\\ &=& f(s) + \sum_a \pi(a|s) \gamma\;\sum_{s^{\prime}} P(s^{\prime}|s,a) f(s^{\prime}) \\ &&+ \sum_a \pi(a|s) \gamma\;\sum_{s^{\prime}} P(s^{\prime}|s,a) \sum_{a^{\prime}} \pi(a^{\prime}|s^{\prime}) \gamma\;\sum_{s^{\prime\prime}} P(s^{\prime\prime}|s^{\prime},a^{\prime}) \frac{\partial V(s^{\prime\prime})}{\partial \theta} \\ &=& f(s) + \sum_a \pi(a|s) \gamma\;\sum_{s^{\prime}} P(s^{\prime}|s,a) f(s^{\prime}) \\ &&+ \sum_a \pi(a|s) \gamma\;\sum_{s^{\prime}} P(s^{\prime}|s,a) \sum_{a^{\prime}} \pi(a^{\prime}|s^{\prime}) \gamma\;\sum_{s^{\prime\prime}} P(s^{\prime\prime}|s^{\prime},a^{\prime}) f(s^{\prime\prime})+\cdots \end{eqnarray} ここで、 \begin{equation} \sum_a \pi(a|s)P(s^{\prime}|s,a)=\sum_a P(s^{\prime}|s,a)\pi(a|s)=P(s^{\prime}|s) \end{equation} が成り立つから次式を得る。 \begin{equation} \frac{\partial V(s)}{\partial \theta} =f(s)+\gamma \sum_{s^{\prime}} P(s^{\prime}|s)f(s^{\prime}) +\gamma^2 \sum_{s^{\prime},s^{\prime\prime}} P(s^{\prime\prime}|s^{\prime}) P(s^{\prime}|s)f(s^{\prime\prime})+\cdots \end{equation} 右辺第2項の$P(s^{\prime}|s)$は1ステップで状態$s$から$s^{\prime}$へ遷移する確率、第3項の$\sum_{s^{\prime}}P(s^{\prime\prime}|s^{\prime}) P(s^{\prime}|s)$は2ステップで状態$s$から$s^{\prime\prime}$へ遷移する確率を表す。これを一般化し、$k$ステップで状態$s$から$x$へ遷移する確率を$P(s\rightarrow x,k)$と書くことにすると \begin{eqnarray} \frac{\partial V(s)}{\partial \theta} &=&f(s)+\gamma \sum_{x} P(s\rightarrow x,1)f(x) +\gamma^2 \sum_{x} P(s\rightarrow x,2)f(x)+\cdots \\ &=& \sum_{k=0}^{\infty}\gamma^{k}\sum_x P(s\rightarrow x,k)f(x) \end{eqnarray} を得る。ただし、$k=0$のとき状態は変化しないので次式が成り立つことを用いた。 \begin{equation} \sum_x P(s\rightarrow x,0)=1 \end{equation} ところで、$J(\theta;s_0)$は$V(s_0)$であったから \begin{eqnarray} \frac{\partial J(\theta;s_0)}{\partial \theta} &=& \frac{\partial V(s_0)}{\partial \theta} \\ &=& \sum_{k=0}^{\infty}\gamma^{k}\sum_x P(s_0\rightarrow x,k)f(x) \end{eqnarray} が成り立つ。$f(x)$を元の式に戻して \begin{eqnarray} \frac{\partial J(\theta;s_0)}{\partial \theta} &=& \sum_s \left[\sum_{k=0}^{\infty}\gamma^{k}P(s_0\rightarrow s,k)\right]\sum_a \frac{\partial \pi(a|s)}{\partial \theta}Q(s,a)\\ &=& \sum_s d(s)\sum_a \frac{\partial \pi(a|s)}{\partial \theta}Q(s,a) \end{eqnarray} を得る。ここで、$d(s)\equiv \sum_{k=0}^{\infty}\gamma^{k}P(s_0\rightarrow s,k)$と置いた。上式をさらに変形すると \begin{eqnarray} \frac{\partial J(\theta;s_0)}{\partial \theta} &=& \sum_{s,a} d(s)\pi(a|s)\frac{1}{\pi(a|s)} \frac{\partial \pi(a|s)}{\partial \theta}Q(s,a) \label{eq1} \end{eqnarray} を得る。ここで、右辺の$d(s)\pi(a|s)$は以下のように変形できる。 \begin{eqnarray} d(s)\pi(a|s) &=& \sum_{k=0}^{\infty}\gamma^{k}P(s_0\rightarrow s,k)\pi(a|s)\\ &=& \sum_{k=0}^{\infty}\gamma^{k}P(S_k=s|S_0=s_0)\pi(a|s)\\ &=& \sum_{k=0}^{\infty}\gamma^{k}P(S_k=s|S_0=s_0)\;P(A_k=a|S_k=s)\\ &=& \sum_{k=0}^{\infty}\gamma^{k}P(S_k=s, A_k=a|S_0=s_0) \end{eqnarray} 上式は、時間ステップ$t=0$において$s_0$であった状態が、最終的に状態$s$・行動$a$に遷移する全てのステップを足し合わせた確率を表している。割引率$\gamma$により、ステップ数が多いほど確率が低くなることが考慮されている。以上の考察から、式($\ref{eq1}$)は期待値の記号を用いて表すことができる。 \begin{eqnarray} \frac{\partial J(\theta;s_0)}{\partial \theta} &=& {\bf E}\left[\frac{1}{\pi(a|s)} \frac{\partial \pi(a|s)}{\partial \theta}Q(s,a)\right]\\ &=& {\bf E}\left[\frac{\partial \ln{\pi(a|s)}}{\partial \theta}Q(s,a)\right] \end{eqnarray} 上式を方策勾配定理と呼ぶ。

    参考文献